CS 598 WSI, LECTURE 11

> Estimating position > Velocity estimation Doppler Shift

• •

• •

• •

• •

• •

• •

٥

• •

> Batmobility.

٠

٠

۰

۰

• • •

•

• • • •

0 0 0 0

.

.

.

• •

.

.

.

•

•

.

•

•

Position Estimation. RF distance. Angle mulhipath Cons Pros > non-line of sight -) Computation > infrastructure (fingerpour) -> precise indoors. -> need to know Allocation

Position Estimation: IMU Inertial motion measurement unit acceleration Cryroscope magnetionets acceleration angletore magnetic 3-dof 9 velocity 0.01m/s² acceleration fructurely 0.1m/s glabel orientes the field 9.01m/s acceleration fructurely the footal fructure fructurely footal fructure fructure footal (Suffer from drift. - Cheap Longulation highers higher sampling

Vision-Based Positioning - IDAKS Cameras L's focalize ٠ (ons Pros > Low light -> comeras are or occlusions Usefiel for mulhich non-line g Sight applications > yobust ecosystim A depth is nor for detiction X friviel with a sigle comence togala.) mor conjutation.

Estimating Velocity -> derivative g position over time position velocity can be "easier" accelerometer -> Single integration of acceleration mohon relohive end tarreget velocity: V == 0 observed velocety = V $\mathcal{V}' \simeq \mathcal{V}$ Ĵ

VS. inside out outside-in infrastructure-drivin Sensor us on the drone. IR (Infrand)-based Systems IMU on the doone. • • • • • • • • • • • • • • • • ٠ ۰ • ۰ 0 0 • ۰ ٠ ۰ ۰ .

Ophical Flow De down faing comera. Challenges for dark bad lighting condition +> featuriliss => privacy - challenges Rador to provide velocity-based Control.

Doppler Shift RF signals -> frequency f. observed freq, = $f(\frac{v}{c})$ 15mm) ((((g)) freq. of the reflections dopplen ship 0.5M2= 25x108 velocity) speed limit. V2=12= v x 2002 m/s V2=12= v x 2002

BatMobility J-ve dopplier shift is supposed to be zero Surface-parallel doppler shaft. dispersion us. reflection. A Do Do Do is the one much smaller than wavelength JACK

Smooth surface. mo ofthe same order as wavelegt rough surface. light is dispersive $W_{t}-F_{1} \rightarrow 6-12cm$ minWave frequencies -> <1cm floor 15 dispersive going due on coming close

L I N

p dupper shipt $\frac{1}{-\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$ S' C'ISA×3 $S_2 =$ marinium velocity minimum vlocity detiched => how much time do = you cophen? dipplur Sheft red - Tz conside for computed 0.51/2 2s =

directo hon Doppler Shift Doppler Shift 1 0 0 -1 θ -0.5 0.0 0.5 -0.5 0.0 0.5 -1 0 1.0 1.5 -1.5 -1.01.0 1.5 Angle Angle (a) (left) Motion of the UAV, (center) Simulated doppler-angle plot, (right) Observed doppler-angle plot. Doppler Shift Doppler Shift 1 0 0 θ -10.5 1.0 1.5 -1.0 -1.0 -0.5 -1.5 -0.5 0.0 0.5 1.0 1.5 Angle (b) (left) Motion of the UAV, (center) Simulated doppler-angle plot, (right) Observed doppler-angle plot. amplichidi rlocky mulhipath round nay not

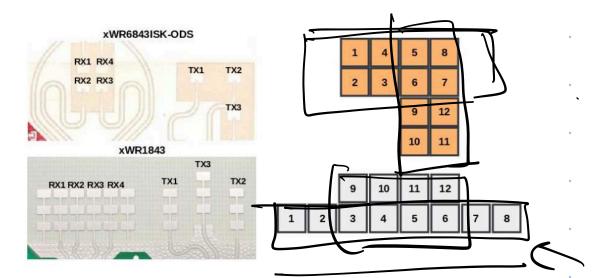


Figure 5: *Left*. Physical antenna array layouts on single-chip mmWave radar boards. *Right*. Corresponding numbered virtual antenna array under TDM MIMO.

•	•	m	• •	C	1		1	1	1		1 C 1	F	•	•	•	•
•	•	٠	٠	•	•	٠	0	•	0	•	٠	•	•	0	0	۰
•	0	٠	۰	۰	٠	۰	•	0	•	0	۰	0	•	•	•	۰
•	0	۰	•	0	•	۰	0	0	0	0	•	0	¢	0	0	٠
0	٠	٠	0	٥	٠	٠	٠	•	٠	•	٠	•	۰	٠	٠	٠
•	•	•	٠	o	•	۰	•	•	•	•	٠	•	•	•	•	•
•	0	٠	0	0	0	•	0	0	0	0	•	0	•	0	0	٠
•	0	٠	•	٥	0	٠	0	0	•	0	٠	0	٠	0	•	•
•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	۰
•	•	٠	۰	۰	•	٠	٠	•	٠	•	٠	•	٠	٠	٠	٠
•	0	•	•	٠	0	•	•	0	•	0	•	0	•	•	•	٠
•	٠	٠	٠	٠	٠	٠	0	٠	0	•	٠	٠	•	0	0	٠
•	0	•	0	•	•	0	•	0	0	0	0	0	•	•	0	•
•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠

									<u> </u>				-		
Downw	ard Radar	Preprod	X Cube		Doppler-Azimuth Processing			X Heatmap Y Heatmap		Flow Conversion \tan^{-1}					
IWR684	43ISK-ODS				Process	sing [[]	•		r	o	$d heta_x, d heta_x$	$l heta_y$.			
•	• •	•	•	•	o		٠		•	٥	•		٠		
0	• •	•	e e	•	•	•	•	•	•	•	o	•	•		
۰	• •	•	٥	٠	۰	٠	٠	٥	٠	ø	۰	۰	۰		
•	• •	•	•	٠	٠	۰	•	٠	۰	٠	•	•	•		
•	• •	•	•	•	•	•	•	•	•	۰	•	٠	•		
٠	• •	٠	•	•	٠	٠	٠	٠	٠	0	•	•	٠		

•

۰

•

۰

۰

۰

•

٠

۰

۰

.

•

۰

•

•

•

۰

•

• •

۰

•

•

•

•

۰

۰

۰

۰

٥

۰

۰

۰

٠

۰

۰

•

۰

٠

•

•

٠

۰

•

•

۰

۰

۰

•

٠

•

0

•

•

0

۰

۰

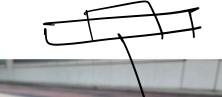
•

•

•

•

٠


٠

•

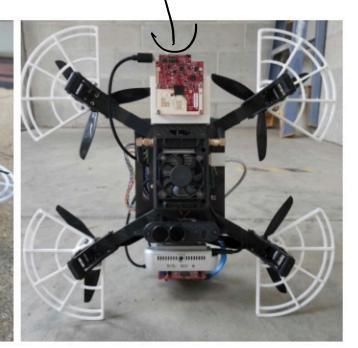
۰

٠

۰

۰

•


•

0

•

•

•

٠	٥	۰	۰	۰	o	٠	۰	۰	۰	٠	٠	۰	۰	۰	٠	٥
٠	•	٠	ø	ø	٠	0	•	ø	o	•	•	•	•	•	•	٠
۰	٠	٠	٠	٠	٠	٠	٠	٠	o	٠	٠	٠	٠	٠	٠	٥
٠	•	Ð	o	o	٠	0	o	o	o	۰	•	o	٠	•	٠	٥
٥	۰	۰	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	۰	0	۰
0	٥	۰	o	o	٠	٠	•	o	٥	٠	٠	٠	٠	٠	0	٥
٥	0	٠	٠	٠	٠	٠	•	٠	0	•	•	•	٠	٠	٠	٥
•	0	۰	٠	٠	٠	٠	۰	٠	o	0	0	٠	o	٠	0	٠
٠	•	٥	۰	۰	۰	0	o	۰	o	٠	•	۰	٠	۰	٠	٥
٠	•	٥	۰	۰	۰	0	o	۰	o	٠	•	۰	٠	۰	٠	٥
٠	۰	۰	0	0	٠	o	۰	0	۰	٠	٠	۰	o	۰	۰	٥
٠	o	۰	o	o	٥	٥	٠	o	o	o	٠	ø	o	o	o	٥
٥	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	۰	۰	٥

•

۰

0

۰

•

۰

•

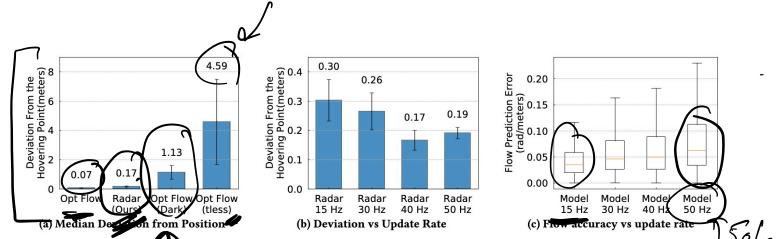


Figure 13: Loiter Test. (a) UAV equipped with BatMobility holds its position, but optical flow fails in dark and textureless / S conditions. (b) Higher update rates support better hovering performance, in spite of higher flow prediction errors shown in (c).

•

•

•

•

•

•

•

•

•

١

•

•

•

•

•

•

•

•	•		•	•	0	0	0	•	0	0	0	•	0	•	۰	•
	•															
٥	•		•	•	•	•	•	•	•	0	•	•	•	•	0	0
•	•		•	•	0	0	0	•	0	0	0	•	0	•	•	0
•	٥		•	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	•	0
0	•	•	٠	•	٥	٥	۰	•	۰	•	٥	•	٥	•	0	0
•	•		•	•	•	•	•	•	•	0	•	•	•	•	0	•
•	•	•	•	•	0	0	0	•	0	0	0	•	0	•	٥	•
0	٥		•	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	•	•	0
•	•		•	•	٠	٠	٠	٠	٠	•	٠	•	٠	•	0	•
•	•		٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	0	•
٥	•		۰	٠	•	•	0	٠	0	0	•	٠	•	٠	•	•
•	٥		•	٠	۰	۰	۰	٠	۰	۰	۰	٠	۰	•	•	•
۰	•		•	•	۰	۰	۰	•	۰	•	۰	•	۰	•	•	0
٥	•		٠	•	٠	٠	٠	•	٠	٠	٠	•	٠	•	0	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•